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Abstract Building on work of York et al.,1 we analyze a particular aspect of the following optics problem: Is the
signal to noise ratio (SNR) of interferometric nulling with a given photon budget infinite? We compare the previously
stated expression for the SNR with a different way of estimating an unknown amplitude: interfering with a very strong
reference wave of known strength, i.e. optical amplification. Our analysis reveals that optical amplification is in
all aspects superior to interferometric nulling. It not only yields more precise estimates, even when a scheme based
on rejecting an estimate is used, but in addition optical amplification does not require a rejection of a hypothesized
position estimate. We confirm our theoretical prediction with some numerical investigation; visually observing the
differences between both methods, as well as stating some statistical analysis.
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1 Introduction

In the micro–publication,1 York et al. describe an interesting scientific problem relating to mea-

suring an amplitude-phase object using a Mach-Zehnder interferometer (Fig. 1). Their thought–

experiment is based on the only source of noise being the stochastic nature of the photons:

Yi = P{yi} (1)

yi = |aix+ bi|2 (2)

with Yi being the measured number of photons in experiment number i, P describes the processes

of drawing from a Poisson distribution with expected number of photons yi, x being the amplitude-

phase object to measure ( |x| ≤ 1), bi being the reference amplitude in the interferometer and ai

being the illumination amplitude before the object in this experiment.
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Fig 1 Mach-Zehnder type interferometer as described by York et al.1 One arm of the interferometer contains the
unknown object x + spatial light modulator (SLM) a. The reference arm only a single SLM b. Both SLM’s are able
to perform a complex modulation of the light distribution, hence change amplitude and phase. In the constructive
channel we obtain the signal y = |ax+ b|2.

The Poisson process P{y} has the probability distribution:

P (Y |y) =
yY

Y !
exp(−y) (3)

The guessing ”game” as described in1 is to estimate x by a smart choice of ai and bi with the

additional limitation of a finite illumination budget A, which is given as:
∑N

i=1 |ai|2 ≤ A with N

being the number of experiments performed. York et al.1 continue to analyze this problem and

arrive at the following expression for the signal-to-noise ratio (SNR):

SNR =
|a+ b|2

|ax+ b|
− |ax+ b| (4)

which has the surprising property of becoming infinite if the interferometer is adjusted for perfect
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configuration: b = −ax. This is the point which our micro-publication is addressing: Is the SNR

of such an interferometric measurement for estimating x really infinite ?

2 Nulling or amplification?

The first point to notice in eqn. 2 is that the result of each measurement is independent of the choice

of a global phase, as the magnitude squared is calculated. Since both, ai and bi, are permitted freely

to choose their phase, a single relative phase suffices and we can set ai to always be real valued

without loss of generality. Next we can separate the problem into a real and an imaginary part,

which are added in quadrature. We therefore first analyze the real part of the problem by also

assuming x and bi to be real. To gain some insight, we now further assume that all N experiments

refer to the same choice of ai. Hence we can replace eqn. 2 with a single experiment using all the

available photon budget at once:

y = |
√
Ax+ b|2 (5)

The infinite SNR in a nulling experiment as stated in eqn. 4 does not consider that we may have

estimated x wrongly and thus chose a wrong value for a, but nevertheless obtained zero photons in

our measurement due to the limited overall photon budget.

In our work, we aim to compare the estimation of x by nulling (setting b = −
√
Ax) with

another scheme where b � 1. This principle, termed optical amplification, is known for example

in optical coherence tomography (OCT) as a method to eliminate read noise.2 Here we do not

analyze it in the context of read noise, rather as a general interferometric technique and compare it

with the nulling scheme as suggested by York et al.1
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3 Comparison of both approaches

For a fair comparison it is essential to construct a thought experiment treating the schemes to

compare equally. This is not trivial: the nulling scheme (I) is a hypothesis test. It is able to achieve

complete experimental agreement, i.e. for a chosen b our measurement does not yield a single

detected photon, hence our obtained estimate x̂ is consistent with being the correct value x. The

optical amplification scheme (II), however, typically detects a number of photons from which a

value of x is estimated with a predictable precision. These are two fundamentally different ways

of how to infer information on x.

3.1 A new thought experiment

To nevertheless be able to compare both schemes on equal terms we designed the following hy-

pothesis testing scheme: for a given (unknown) x the range x ∈ [−1, 1] is tested in equal steps

Sx searching for x = x̂. For the nulling scheme, consistency is given by detecting zero photons,

whereas for the amplification scheme we have to define a different consistency rule:

In this case, being consistent means that the detected number of photons (Y ) is within a small

distance ∆y from the predicted number of photons (assuming x̂ = x), given the chosen value

of b. To further simplify our analysis, we approximate ∆y to be small enough that there is no

significant change of the probability of detecting photons over this range, i.e. the probability of

detecting photons in the range Y = y ± ∆y/2 is approximately given by ∆yP (y|y). Since we

further assumed b to be large, we can approximate the Poisson distribution (eqn. 3) by a Gaussian

probability density, with a variance equal to the expectancy:

P (Y |y) =
exp

(
−|Y−y|2

2y

)
√

2πy
(6)
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3.2 Comparing both inference schemes

Now we are able to compare the quality to estimate x̂ in our thought experiments. For the nulling

scheme, we obtain the probability to measure zero photons according to eqn. 3 as

y = |
√
Ax−

√
Ax̂|2 = A|x− x̂|2

P (Y |y) =
(A|x− x̂|2)

Y

Y !
exp(−A|x− x̂|2)

P (0|y) = exp(−A|x− x̂|2) (7)

Introducing b′ = − b√
A

, this has to be compared to the result obtained in the amplification scheme.

Noting that:

y = |
√
Ax−

√
Ab′|2 = A|x− b′| (8)

We can express eqn. 6 as:

P (Y |y) = ∆y
exp(− |Y−y|

2

2y
)

√
2πy

= ∆y
exp(− |A|x−b

′|2−A|x̂−b′|2|2
2A|x̂−b′|2 )

√
2πA|x̂− b′|

(9)

With Y = A|x − b′|2 the actual measured value and y = A|x̂ − b′|2 our estimated measurement

result. The exponent can be simplified as follows:

−A|x
2 − 2b′x− x̂2 + 2b′x̂|2

2(x̂2 − 2b′x̂+ b′2)
≈ −A| − 2b′(x− x̂)|2

2b′2
= −2A|x− x̂|2 (10)
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Using the fact that x << b′ and x̂ << b′. With this we can express eqn. 9 as:

P (Y |y) ≈ ∆y
exp (−2A|x− x̂|2)√

2πAb′
(11)

In both cases we obtain Gaussian probability distributions. However, if we now compare the two

results, we notice a difference in their width. For the nulling scheme we obtain:

σnulling =
1√
2A

(12)

In case of the amplification scheme we get:

σamplification =
1

2
√
A

=
σnulling√

2
(13)

Leading to the interesting result that the estimation based on the amplification scheme seems

to be more precise than the estimation based on interferometric nulling.

3.3 Estimating from each individual measurement

However, this leaves us with the problem that the overall success rate of our amplification hypoth-

esis test is fairly low, since ∆y has to be chosen much smaller than the width of the probability

distribution to render our approximation in eqn. 9 valid. Yet, if we chose a different estimation

scheme, using a large reference b, but estimating x̂ by directly from each measurement as:

y = A|x− b′|2

→ x̂ = b′ −
√
y/A (14)

6



for large positive b′. This yields a probability distribution equal to the hypothesis testing scheme

(eqn. 9), with the only difference that in each case a solution is found leading to an estimate and

there is no experiment which gets rejected by the hypothesis test. This is in all respects superior

compared to the hypothesis testing scheme using interferometric nulling. Not only is an estimation

possible every single time, but even for the cases where the experimental outcome is not rejected,

its estimate is on average closer to the true value x.

4 Numerical results

To verify our theoretical findings, we did some numerical evaluation of both inferring schemes.

4.1 General description of our numerical evaluation

In total we performed three different experiments: for three different photon budgets (10, 40 and

100) we inferred the unknown x using both strategies. For each photon budget, we inferred 10

different values of x, which have been chosen randomly within the unit circle, by having amplitude

and phase being uniformly distributed. For each x we run the respective inferring scheme 10 times

to get some statistical significant. Note that we have implemented the algorithm in an iterative way

(ai = 1), in contrast to our derivation in section sec. 2. In each iteration the algorithm calculates a

probability map, indicating the likelihood of the true x being found at that specific position. For the

nulling approach the value of b has been chosen according to b = −
√
Ax̂, with x̂ being the current

(best) estimate. In case of the amplification scheme, b has been chosen according to |b| >> 1. The

phase of b changes in steps of π/2 for each iteration, so that there is always an alternating between

the real and the imaginary axis . For more detail have a look in the code we provide with this

publication (see sec. 7).
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4.2 Graphical comparison between both strategies

In Figure 2 we show the results of both algorithms for five different iteration steps. the parameters

used were: A = 40; a = 1; |b| =
√

10. A red cross indicates the true position of x and the yellow

ring the current estimate x̂ . The blue background indicates the probability map, telling us the

likelihood of the true x to be found here. A higher probability is indicted by a darker color. Both

algorithms start with the same probability distribution (blue); a constant as there is no information

yet leaving all possible x with the same change of being the true value. From there on we describe

both algorithms separately.

Nulling:

Already in the beginning of the iterations a photon is measured; hence indicating that the current

estimate can not be the correct one. As the intention of the nulling scheme is to achieve perfect

interferometric canceling, overall there wont be many photons being measured. Hence an update

of the probability map happens rarely (also see video Interference-Inference-nulling.avi in sec. 7).

When a photon is measured the probability map changes (Fig. 2, top), as we must include a zero

probability at the position of our current estimate x̂. The more photons are measured the more

irregularly shaped the respective probability distribution gets. The final guess ended up close to

the correct value of x. We show the residuals throughout the iteration in Fig. 3.

Amplification:

The main difference to the nulling approach is that in each iteration, we always obtain a new

estimate x̂. Therefore also the probability map changes in every iteration, but stays in an ellip-

soidal shape. Following the maximum of the distribution reveals some wiggly-motion (see video
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Interference-Inference-amplification.avi in sec. 7). It is possible that a new estimate actually

is worse than the previous one, which comes from the randomness of the measurement process.

Nevertheless, on average, we end up much closer to the true value x, when all illumination photons

have been used, as indicated in Fig. 3 and Tab. 1.

Fig 2 Graphical comparison of both inferring schemes; nulling (top) and amplification (bottom) for 5 different inferring
steps. Each graph shows the true value x (red), the current estimation x̂ (yellow) and the corresponding probability
map (blue; darker = higher probability). The following parameters were used: A = 40; a = 1; |b| =

√
10. See also

Video 1 & Video 2 for a more traceable visualization.

4.3 Statistical analysis of our numerical results

For each experiment we have calculated the residuals: ε = x−x̂. To analyze the statistical behavior

we show the mean (ε̄) and the standard deviation of the mean (σε̄), for each iteration by taking the

10 ·10 numerical experiments into account. The result is presented in Fig. 3 a), where we show |ε|.

In the first half of the inferring game, on average, the nulling scheme outperforms our amplification

approach. However, towards higher iteration number we observe a clear enhancement inferring

using b >> 1 (see small inlet). Also note that the uncertainty in latter is reduced by a factor ≈ 1.2

(also see Tab. 1). In Fig. 3 b & c) we show the standard deviation of the probability map along

real and imaginary axis, for each iteration.
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Fig 3 Comparing the performance of the nulling (blue) and amplification (magenta) scheme for each iteration. We
show the mean residual (ε̄; line) ± one std. dev. deviation of the mean (σε̄), which we obtained by evaluating the
inferring of 10 randomly chosen (amplitude & phase both uniformly distributed), each with 10 different tries. a) shows
|ε|. b) & c) indicate the evolution of the probability map’s variance along the real and imaginary axis. The small inlets
show a zoomed region of each plot. The following parameters were used: A = 100; a = 1; |b| =

√
10.

Throughout the whole inferring process, the amplification algorithm results in a much smaller

probability distribution, hence a more accurate estimation of x. This becomes also clear when

looking at Fig. 2; overall the amplification algorithm tries to find a solution in the direct neigh-

boorhood, while in the nulling scheme an updated estimate x̂ might lie opposite to the previous.

Photon budget A Nulling Amplification Nulling / Amplification

10

ε̄ 0.3048 0.2767 1.1017
σε̄ 0.0226 0.0156 1.4455
σ̄r 0.2400 0.1916 1.2526
σ̄i 0.2532 0.2081 1.1066

40

ε̄ 0.1455 0.1315 1.1066
σε̄ 0.0114 0.0066 1.7428
σ̄r 0.1264 0.1003 1.2605
σ̄i 0.1329 0.1088 1.2213

100

ε̄ 0.1051 0.0861 1.2204
σε̄ 0.0076 0.0044 1.7300
σ̄r 0.0839 0.0659 1.2740
σ̄i 0.0872 0.0711 1.2266

Table 1 Mean (ε̄) and the standard deviation of the mean (σε̄) of the residuals at the last iteration. Also the standard
deviation of the probability distribution along the real (σ̄r) and the imaginary (σ̄i) axis is shown. All quantities are
given for three different photon budgets (A). In all scenarios the amplification strategy beats the nulling scheme, as
can be seen from the ratio > 1 in the last column.
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As expected, all quantities decrease when a higher photon budget is available as it is possible

to obtain more information about the sample. When comparing both inferring schemes, we note

that in all scenarios the amplification strategy gives better results, as predicted in our theoretical

section. Note that this is not only true for a low photon budget. Even with higher illumination, the

amplification strategy shows better results than the nulling approach.

5 Discussion

Our numerical results show that indeed the optical amplification algorithm gives better estimates

than the previously suggested nulling scheme. We not only observe better estimations of x, also

our prediction accuracy is higher. The probability distributions, generated in each iteration of both

algorithms, are always more narrow in the amplification scheme (see Fig.3 b & c). However, we

observe a difference in the width along the real and imaginary axis. It turns out, that our predicted

factor of improvement (
√

2 ≈ 1.4142; eq. 13) is not completely reached in our numerical results

(see Tab. 1). An explanation for this might, that our choice of |b| =
√

10 only partially resembles

the assumption in our theoretical derivation (b >> 1).

Figure 3 a) suggests that there is a ”break-even point” from which on optical amplification

provides a smaller residual than the nulling scheme. However, this point is not fixed to the iteration

nr. ≈ 40, as it merely depends on the the cost per round (a). Choosing a small a enables to reach

a higher number of total iterations. But comes at the cost of having reduced accuracy in the first

iteration steps, which our optical amplification methods first has to overcome. Overall this means

that there might be an ideal point for each number of available photons (A), for which one quickly

reaches the break-even point,while having enough iterations left to further improve the current

estimation. A characterisation of these points requires further investigations.
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Nevertheless, we have clearly shown that a better algorithm than the nulling scheme, suggested

in,1 can be found. It may be argued that a smarter algorithm than subsequent testing of possible

candidates x̂ might also achieve an estimate for x in every single case. However, this modified

nulling procedure will never be able to beat the hypothesis testing scheme in precision for the cases

where no photons were detected. In such cases the nulling scheme is always ”stuck” by assuming

that its current estimate is already the correct solution, yet it is still on average further away from

the true x than what can be achieved by the amplification scheme III, because: σnulling > σamplification.

However, there is an important aspect, which we did not analyze due to the initial assumption

of a real-valued b: in the nulling scheme, the hypothesis (x = x̂) is confirmed simultaneously

for both the real and the imaginary part of the equation. Whereas the amplification scheme only

yields information about the real part in both, the hypothesis–testing and the continuous–estimation

approaches. A simple way to accommodate for this disadvantage would be to alternate b between

large real and large imaginary values similar to the suggestion in.1 This would half the photon

budget along each direction, yielding a worsening of the estimate by
√

2, which would then modify

eqn. 13 into σamplification = σnulling. Nevertheless we argue that the amplification scheme (III) is still

superior, since it is not a hypothesis testing scheme but yields a new estimate in every test.

6 Conclusion

We have shown that the SNR for interferometric compensation (nulling) for the practical case of

estimating x is, in contrast to the analysis of York et al.,1 not infinite. Furthermore there is also a

significantly better scheme for estimating x, which is simply choosing a very large (ideally infinite)

value of b (or b′). The numerical evaluation we have done is in good agreement with our theoretical

finding and might lead to an even better inference algorithm in the future.
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7 Supplementary material

With this publication we also publish the following two Python scripts:

1. Interference-Inference-graphics.py: The script shows the inferring process for a single experiment.

Besides a visualization of the unit circle, the estimated x-values and the probability map, there is also

an updating graph showing some of the statistical quantities changing in each iteration.

2. Interference-Inference-statistics.py: This script performs several experiments (for a given photon

budget) and evaluates some statistical quantities, shown in Tab. 1. The only output in the end is given

in the editor, no graphical visualization or other user information.

Note that both scripts import the file game.py, which is provided by Andrew York under:

https://zenodo.org/record/1463273

Additionally we also provide two videos visualizing the inferring process for both strategies which are

named: Interference-Inference-nulling.avi and Interference-Inference-amplification.avi.
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